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Abstract

Structure–retention relationship study, conducted by RP–HPLC, was used to investigate physical chemical
parameters related to the RP retention times of amiloride, hydrochlorothiazide and methyldopa in order to predict
the separation of amiloride and methylclothiazide from Lometazid® tablets. Retention data were obtained with an
ODS column using a mobile phase methanol–water (pH adjusted with phosphoric acid). Physical chemical properties
were calculated directly from the molecular structure. Artificial neural networks (ANNs) were used to correlate
chromatograms retention times with mobile phase composition and pH, and with physical chemical properties of
amiloride, hydrochlorothiazide and methyldopa and to predict separation of amiloride and methylclothiazide from
Lometazid® tablets. Sensitivity analysis was performed to interpret the meaning of the descriptors included in the
models. Results confirmed the dominant role of the polar modifier in such chromatographic systems. Within a series
of solutes chromatographed under identical conditions, the retention parameters could be approximated by a
non-linear combination of log P, log D, pKa, surface tension, parachor, molar volume and to minor extend by
polarisability, rexractivity index and density. This study has demonstrated that the use ANNs techniques can result
in much more efficient use of experimental information. As HPLC is the most popular analytical technique,
improvements in HPLC methods development can yield significant gains in the overall analytical effort. The ANNs
extension presented could be the method of choice in some advanced research settings and serves as an indication of
the broad potential of neural networks in chromatography analysis. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Predicting chromatographic behaviour from
molecular structure of solutes is one of the main
goals of the structure–retention relationships
(SRR) methodology. The usefulness of Artificial
neural Networks (ANNs) for modelling retention
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times in HPLC optimisation to correlate the chro-
matographic behaviour of solutes (capacity factors)
with mobile phase composition and pH has been
previously investigated [1,2]. Over the last few years
HPLC retention data have been used as a pseudo-
molecular descriptor to estimate the aqueous solu-
bility of aromatic hydrocarbons [3] and organic
non-electrolytes [4], to estimate octanol/water par-
tition coefficient [5,6], for determinations of log Poct

values of chlorosubstituted aromatic compounds
[7] and for accurate estimations of pKa [8,9].
Computer simulation methods has been used to
predict separation as a function of simultaneous
change in pH and solvent strength for reversed-
phase high-performance liquid chromatography
[10,11] and hydrophobicity coefficients for the
prediction of peptide elution profiles [12].

The aim of this work was to find molecular
parameters related to the RP retention times and
to predict the retention as a function of changes
in mobile phase pH and composition, in addition
to molecular structure descriptors of separated
solutes. ANN model was used to correlate the
liquid chromatographic behaviour of a group of
structurally diverse diuretics with their physical
chemical and molecular descriptors and to create
a model for the prediction of retention values of
unanalysed molecules.

1.1. Artificial neural networks

An artificial neural network is an information-
processing model inspired by the way biological
nervous systems, process information. It tries to
simulate its learning process. It learns by example
from experience during training phase. ANN is
composed of a large number of highly intercon-
nected processing units, the artificial neurons or-
ganised in layers. Connecting lines have
associated connection ‘weights’, which can be
modified during the training or ‘learning’ process.
Under suitable conditions, a neural network can
be trained to learn the relationship between a set
of input/output pairs, called the training set.

The behaviour of neural network architecture is
generally determined by the transfer functions of
its neurons, by the learning rule, and by the
architecture, itself.

We have used a supervised network with back-
propagation learning rule. In this type of model,
informations from various sets of inputs are fed
forward through the ANN to optimise the weights
between neurones, or to train it. The output of
the neurone is related to the summed input by a
sigmoid shaped transfer function. The optimisa-
tion is therefore non-linear. The network pro-
duces a response that is compared with the
desired response. The difference is called the er-
ror. The error in the prediction is propagated
back through the system to adjust the weights in
the network so that the next time the same exam-
ple is presented, the network will come closer to
producing the desired response. This type of
learning or training is called supervised.

If a network has a larger capacity for learning
with respect to the training data set, over-training
can result when the network continues to learn
very specific features of the training data and
looses the ability to generalise. Over-training can
be measured by checking the results of test data
set. If at some point during learning test data
begins to produce worse results, even though the
training data continues to produce improved re-
sults, over-training is occurring.

Thus, three types of data sets are used:
1. Training data: used to train network,
2. Test data: used to monitor the neural network

performance during training,
3. Validation data: used to measure the perfor-

mance of a trained application,
each with corresponding error.

1.2. Physical chemical properties

Since the work of Louis Hammett [13] (1894–
1987) who correlated electronic properties of or-
ganic acids and bases with their equilibrium
constants and reactivity, the development of
mathematical models that correlate structure with
reactivity is in increasing rate. The basic philoso-
phy is that the structural changes that affect the
biological activities of a set of compounds are of
three major types: electronic, steric, and hydro-
phobic. Electronic variations have been largely
treated by using Hammet and Taft [14] equations
for pKa values. Hydrophobic changes are mod-
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elled with partition coefficient or distribution co-
efficient from the octanol–water system. In addi-
tion, molecular-orbital parameters are gaining in
importance.

A number of commercial software products for
physical property prediction exist. Prediction al-
gorithms are developed on correlation between
molecular structure and physical chemical proper-
ties. Such programs can demonstrate graphically
and intuitively the effect of structural changes on
these individual properties. Experimental determi-
nation of such properties can be time consuming
and tedious as well as, in some cases, being subject
to large experimental variation and errors.

The major differences between behaviour profiles
of organic chemical are attributable to physical
chemical properties. A large number of descriptors
have been proposed and tested [15]. Among the

most commonly used molecular descriptors are
molecular weight and volume, the number of spe-
cific atoms, surface areas, refractivity, parachor,
steric parameters and various topological parame-
ters. It is likely that existing and new descriptors
will be tested and eventually a generally preferred
set of parameters will be adopted of routine use for
correlating purpose.

1.2.1. Data determined
tR, retention time measured by reversed phase

liquid chromatography (RPLC); time elapsed be-
tween sample introduction and maximum of
response.

1.2.2. Chemical descriptors (Table 1)
M, the concentration of the organic modifier

(methanol) (%) in the mobile phase; pH, pH of the
mobile phase.

Table 1
Physical chemical descriptors calculated from the molecular
structure
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1.2.3. Data calculated from molecular structure
log P, logarithm of the partition coefficient in

octanol/water; measure of the hydrophobicity or
lipophilicity properties [16]. V, (cm3/mol) the solute
molar volume. log D, distribution coefficient at pH
7.0 in octanol/water, (depends on partition coeffi-
cient (logP) and the dissociation constant(s) (pKa)
at different pH); measure of compound hydropho-
bicity that correlates well with chemical and biolog-
ical properties such as solubility, the
bioconcentration factor, and the adsorption coeffi-
cient. pKa, acid–base ionisation constants under
25°C and zero ionic strength in aqueous solutions;
related to the ionisation capabilities of chemical
species; at a constant temperature the pKa of a
molecule is linearly related to the free energy
change for the reaction of ionisation of a proton.
pKa

0, is the ionisation constant of the unsubstituted
parent compound; pKa value of the unsubstituted
parent compound, and expresses the sensitivity of
the parent compound to the effects of substituents.
P (cm3), parachor [17] is an additive physical
property of a substance related to its molar volume;
determined by the kind and the number of atoms
in a molecule as well as their manner of arrange-
ment and binding. nd20, index of refraction [18]
models the dispersion forces of molecular sub-
stituents; additive constitutive property of
molecules, fragment values have been calculated
for groups of atoms. g (dyne/cm), surface tension
is correlated with the binding forces of polar,
charged molecules within hydrogen bonding and
Van der Waals forces are involved; solution and
dispersion properties increases rapidly with the
reduction of the surface tension. d20 (g/cm3), density
is one of physical characteristics of a substance that
help identify the substance. Mass per unit volume;
refers to the compactness of the matter (g/cm3).
Polarisability [19] (cm3), is numerical derivative of
the dipole moment and geometry charge of
molecules; related to dielectric constants.

2. Experimental

2.1. Equipment

Separations were made on a Waters 5-mm
mBondapak C-18 column (300×3.9 mm i.d. Wa-

ters Milford, MA, USA). The injection volume was
10 ml, elution was performed at a flow rate of 1.5
ml/min and the column was maintained at ambient
temperature. The absorbance was monitored at 286
nm. The mobile phase was methanol–water (pH
adjusted with phosphoric acid).

2.2. Sol6ents and chemicals

Standards of methyldopa (MD), hydrochloroth-
iazide (H) and amiloride (A) and Alatan® tablets
(250 mg MD, 25 mg A, 2.5 mg H) were supplied
by Lek (Ljubljana, Slovenia). Moduretic® tbl. (5
mg A, 50 mg M) were obtained from Merck Sharp
(Dokme International Div. of Merck and Co., Inc,
USA). Standard of methylclothiazide (M) and
Lometazid® tablets (10 mg A, 5 mg M) were
supplied by ICN Galenika (Belgrade, Serbia). The
chromatographic internal standard was coffein. All
solvents used for the preparations of the mobile
phase were HPLC grade and the mixtures were
filtered and degassed before use.

2.3. Solutions

2.3.1. Internal standard solution
An 8 mg/ml solution of coffein in methanol was

prepared.

2.3.2. Solutions for Alatan® tablets

2.3.2.1. Stock solution. About 1000 mg of methyl-
dopa reference material, 500 mg of hydrochloroth-
iazide reference material and 10 mg of amiloride
reference material was precisely weighed, dissolved
in internal standard solution and diluted to 100.0
ml with the same solvent. A 2.5-ml volume of this
solution was diluted with internal standard solution
to 10 ml to form a stock solution.

2.3.2.2. Sample preparation. A finely powdered
Alatan® tablet was accurately transferred to a 100.0
ml calibrated flask and diluted to volume with
internal standard solution. The mixture was soni-
cated for 5 min at room temperature and than
centrifuged at 2500×g for 5 min. The supernatant
liquid was filtered through a 1.5-mm membrane
filter.
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2.3.2.3. Standard solutions. Working standard so-
lutions were prepared by dilution of a 2.0 ml
volume of these solutions to 100.0 ml with the
internal standard solution.

2.3.3. Solution for Lometazid® tablets

2.3.3.1. Stock solution. About 10 mg of amiloride
reference material and 5 mg of methyclothiazide
reference material was precisely weighed, dis-
solved in internal standard solution and diluted to
100 ml with the same solvent to form a stock
solution.

2.3.3.2. Sample preparation. A finely powdered
Lometazid® tablet was accurately transferred to a
100 ml calibrated flask and diluted to volume with
internal standard solution. The mixture was soni-
cated for 5 min at room temperature and than
centrifuged at 2500×g for 5 min. The superna-
tant liquid was filtered through a 1.5-mm mem-
brane filter.

2.3.3.3. Standard solutions. Working standard so-
lutions were prepared by dilution of a 4-ml vol-
ume of these solution to 10 ml with the internal
standard solution.

2.3.4. Solutions for Moduretic® tablet

2.3.4.1. Stock solution. About 5 mg of amiloride
reference material and 50 mg of hydrochlorothi-
azide reference material was precisely weighted,
dissolved in internal standard solution and diluted
to 50 ml with the same solvent to form a stock
solution.

2.3.4.2. Sample preparation. A finely powdered
Moduretic® tablet was accurately transferred to a
50.0-ml calibrated flask and diluted to volume
with internal standard solution. The mixture was
sonicated for 5 min at room temperature and than
centrifuged at 2500×g for 5 min. The superna-
tant liquid was filtered through a 1.5-mm mem-
brane filter.

2.3.4.3. Standard solutions. Working standard so-
lutions were prepared by dilution of a 0.7-ml

volume of these solution to 100 ml with the
internal standard solution.

3. Data analysis

3.1. ANN simulator software

MS-WINDOWS based artificial neural network
simulator software, NNMODEL Version 1.404
(Neural Fusion) was used. For calculating drug
properties from molecular structure PALLAS 2.1
(Compu Drug Int.) and CHEMSKETCH 3.5 free-
ware (ACD Inc.) were used. Calculations were
performed on a Pentium personal computer.

The starting point in this study is a set of
retention times for the active ingredients of Ala-
tan®, Lometazid® and Moduretic® tablets ob-
tained under different chromatographic
conditions. Retention values for amiloride, methyl
dopa and hydrochlorthiazide (Alatan® tbl.) and
amiloride and hydrochlorothiazide (Moduretic®

tbl.), together with their physical chemical proper-
ties were used to train the network and to estab-
lish the relationship.

3.2. Optimal network architecture

A standard feed-forward network, with back-
propagation rule and with single hidden layer
architecture was chosen. A single hidden layer
was used for simplicity, and because there is little
evidence to suggest that a larger number of hid-
den layers improves performance [20]. Problem
was to determine the appropriate complexity of
the network. This problem is similar to the prob-
lem of choosing the degree of smoothing in non-
parametric estimation. Model selection for an
ANN requires choosing the number of hidden
units and connections thereof.

The multilayer perceptron [21] (MLP) model
architecture was chosen. MLPs are general-pur-
pose, flexible, non-linear models that, given
enough hidden neurons and enough data can
approximate virtually any function to any desired
degree of accuracy when little knowledge about
the form of investigated relationship is known. In
this model, the inputs are fully connected to the
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hidden layer and hidden layer neurons are fully
connected to the outputs. Direct connections from
the input layer to the output layer did not im-
prove the network performance. Direct connec-
tion, which could be called main effect in
statistical terminology, would speed the conver-
gence if the relationship were simple.

In order to select the best ANN architecture
pruning method [22] was applied, similarly to
backward elimination in stepwise regression. Con-
nections or units were eliminated during training
based on sensitivity report, highest coefficient of
multiple determination and minimal generalisa-
tion error.

The ANN used in this investigation consisted
of 12 inputs (methanol percentage and pH in
the mobile phase, pKa, pKa

0 log P, log D, molar
volume, refractivity index, surface tension,
density, polarisability and parachor of separated
drugs), one hidden layer, and one output
neuron for the corresponding retention time. The
number of hidden neurons and number of train-
ing cycles as adjustable parameters were opti-
mised.

During training and testing the number of hid-
den neurons has been varied from two to 12 and
training cycles from 0 to 3000 and ANN perfor-
mance was tested after each addition.

3.3. Training

At the start of the training run, both weights
and biases were initialised with random values.
During training, 25% of the data was used as the
test set and was back propagated through the
network to evaluate the trained network. The
training set is used to configure the ANN and
testing set to monitor network performance dur-
ing training.

The error in mapping the training values de-
creased as the number of hidden neurons in-
creased. By increasing the number of hidden
neurons, the ANN more closely followed the to-
pology of the training set that resulted in tracing
the training pattern too closely above an optimum
level. The system was over-trained and exhibited
poor generalisation to unseen data.

3.4. Importance of the inputs

The system was trained with retention times
obtained with Alatan® (containing amiloride, hy-
drochlorthiazide and methyl dopa) and Mod-
uretic® tablets (amiloride and hydrochlorthiazide).
For a sample composed of a mixture of two
compounds, the chromatogram is a non-linear
superposition of the retention times of each indi-
vidual compound. Each drug presented to the
chromatograph produces a characteristic chro-
matogram under specific separation conditions.
By changing experimental conditions of separa-
tions, a database of chromatograms was con-
structed. From this database, training and testing
sets were generated.

MLP model computes the output as a sum of
non-linear transformations of linear combinations
of the inputs. The number of weights and hidden
units increases linearly with the number of inputs.
The higher the dimensionality of the input space,
the more training data sets is required. If the
dimension of the input space is high the network
uses almost all its resources to represent irrelevant
portions of the input space. Careful feature selec-
tion and scaling of the input affects the complex-
ity of the problem, as well as the selection of the
best neural network model. Scaling the compo-
nents according to their importance and selecting
the optimal input subset with the best predictive
ability is necessary. In order to choose the most
significant model variables and to avoid a large
number of inputs network was pruned until good
generalisation was reached based on the sensitiv-
ity report (Table 2). Sensitivity reports show the
sensitivity of the output variables, as a percentage,
to the changes in the input variables. The sensitiv-
ity is calculated by summing the changes in the
output variables caused by moving the input vari-
ables by a small amount over the entire training
set.

The network was trained using 12, 11, ten, nine
and eight input data points. The performance of
the ANN was evaluated with testing data. Using
only 75% of the sample data for training and
performing the cross validation with the other
25% of the data carried out the training. The set
used for testing was rotated and the results of the
four runs were averaged.
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Table 2
Sensitivity of the output variables to the changes in the input variablesa

SensitivityInputs

0.33 0.37 0.32 0.34M 0.32
0.24 0.200.25 0.23pH 0.24
0.08 0.09log P 0.090.07 0.08
0.06 0.080.06 0.08V 0.09
0.07PKA0 0.050.05 0.08 0.09
0.04 0.050.05 0.05g 0.06
0.04 0.04log D 0.060.04 0.05
0.05 0.040.04 0.06P 0.04

0.03pKa 0.04 0.05 0.04
0.03 0.020.04d20

0.03Polarisability 0.03
0.02nd20

11 10NU 912 8

HU 9 8 7 6 5

0.0002 0.0001 0.0002 0.0002Test SSE 0.0003

0.967 0.981 0.974R2 0.9730.958

a NU, number of inputs; HU, number of hidden units; SSE, sum of squared error; R2, coefficient of multiple determination.

3.5. Method 6alidation

The testing error is not a good estimate of the
generalisation error. One method for getting an
unbiased estimate of the generalisation error is to
present the ANN with a new, third set of data,
that were not used at all during the training
process. Separation of amiloride and methylcloth-
iazide (Lometazid® tablets) was performed under
different experimental conditions and experimen-
tal data were compared with predicted data. The
relative error (ERR) [2] was used to compare
generalisation ability of the models (Table 3).

4. Results and discussion

The general assumption in SRR modelling is
that molecular structure causes the chromato-
graphic behaviour. After the chromatographic be-
haviour of amiloride, methylchlorthiazide and
methyl dopa was determined SRR model was
constructed in a several steps. The first step was
to calculate physical chemical parameters as
mathematical representations of investigated di-
uretics. These parameters provided a description

of the similarities and differences of investigated
diuretics. Next step was to correlate molecular
descriptors with the observed chromatographic
behaviour using non-linear neural networks
model. Lack of correlation between input vari-
ables and retention times made the selection of
the important inputs. Sensitivity report was used
as a statistical tool to reduce the number of inputs
and to select the optimal combination of input
variables (Table 2). Retention properties of the
solutes were highly related to the concentration of
the organic modifier (methanol) (%) and pH in
the mobile phase as expected. These results
proved the dominant role of the polar modifier in
such chromatographic systems. Furthermore,
within investigated solutes chromatographed un-
der identical conditions the retention parameters
could be approximated by a non-linear combina-
tion of the molar volume, of log P, log D, pKa,
surface tension, density, parachor and molar vol-
ume. The sensitivity report showed that descriptor
contributions to a model varied from 2 to 32%.

The criteria for judging the best model were
multiple correlation coefficient and sum of
squared error. The resulting models gave an excel-
lent correlation to HPLC retention data yielding
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r2 values from 0.958 to 0.981. The mean sum of
squared error was less than 0.03%. Network struc-
ture was optimised by heuristic search. Seven to
nine hidden neurons respectively were enough to
achieve good convergence on the training data.

The best models were selected and used to
predict separation of amiloride and methylclothi-
azide from Lometazid® tablets (Table 3). Esti-
mated models showed a high degree of correlation
between observed and calculated values of reten-
tion times. This study showed that the models
have a good predictive ability for application.

5. Conclusion

ANN regression analysis to find the best rela-
tionship between the retention data and the struc-
tural descriptors gave highly significant
correlation with reasonable good prediction
power.

The results of this research have shown the
benefits of the neural network application in pre-
dicting chromatographic behaviour from mobile
phase composition and physical chemical proper-
ties and molecular descriptors of solutes.

Table 3
Experimentally measured and predicted by ANNs values of retention time

[5]Predicted tR with different number of inputsMeasured tR

912 811 10

10.51 6.24 6.1510.5910.97a 11.31
6.125.478.489.48a 9.308.81

7.50 5.20 6.158.448.42a 6.41
8.78 7.797.78a 8.25 5.81 3.52

3.494.986.066.94a 7.077.48
6.47 6.587.50a 4.98 4.46 3.50
7.69 6.13 2.357.418.05a 5.97
6.60 6.778.57a 4.86 5.10 2.23
5.83 6.348.90a 4.43 4.31 2.16
7.48 7.077.17a 6.06 4.98 3.49

6.135.739.6810.81a 9.799.49
9.37 9.098.58a 9.67 5.275.67

6.837.007.18a 3.494.725.48
7.35 7.218.37a 5.56 5.82 2.31

21.20 23.20 20.9322.8621.92 19.74
22.17 21.7723.2023.4223.5823.28

35.4935.23 35.3834.7833.5431.18
9.819.338.258.52 8.09 9.45

11.9010.45 12.01 11.7511.55 11.20
17.32 15.8916.4312.21 15.80 17.43

5.92 6.875.617.22 6.21 6.81
7.488.187.828.42 8.017.54

10.8111.12 10.9011.64 10.668.61
11.90 11.75 11.2010.32 12.01 11.55
21.41 22.33 20.6420.43 21.96 22.55

14.1215.5914.9913.72 15.3314.72
13.42 13.27 12.9011.64 14.17 13.52
6.566.386.036.78 6.907.14

0.320.240.170.120.13Relative error

a Methylclothiazide retention time.
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The retention mechanism of chromatographic
systems depends mainly on interactions between
the solutes, stationary phase and mobile
phase. These interactions are explained by
molecular descriptors using SRRs and by corre-
lating molecular structure to solute retention.
SRR studies are proven to be useful in retention
prediction, finding the relevant structural descrip-
tors for analytes and estimating the relative
biological activities of a series of analytes.
This study has demonstrated that the use of
ANNs techniques can result in much more effi-
cient use of experimental information. As HPLC
is the most popular analytical technique, improve-
ments in HPLC methods development can
yield significant gains in the overall analytical
effort.

References

[1] S. Agatonovic-Kustrin, M. Zecevic, Lj. Zivanovic, I.G.
Tucker, Anal. Chim. Acta 364 (1998) 265–273.

[2] S. Agatonovic-Kustrin, M. Zecevic, Lj. Zivanovic, I.G.
Tucker, J. Pharm. Biomed. Anal. 17 (1998) 69–76.

[3] B.G. Whitehouse, R.C. Cooke, Chemosphere 11 (1982)
689–699.

[4] T.L. Hafkenscheid, E. Tomlinson, J. Chromatogr. 218
(1981) 409–425.

[5] R.L. Swann, D.A. Laskowski, P.J. McCall, K. Vander
Kuy, H.J. Dishburger, Residue Rev. 85 (1983) 17–28.

[6] W.A. Bruggeman, J. van der Steen, O. Hutzinger, J.
Chromatogr. 238 (1982) 335–346.

[7] H. Konemann, R. Zelle, F. Busser, J. Chromatogr. 178
(1979) 559–565.

[8] H.Y. Ando, T. Heimbach, J. Pharm. Biomed. Anal. 16
(1997) 31–37.

[9] K. Valko, J. Liquid Chromatogr. 10 (1987) 1663–1686.
[10] J.A. Lewis, J.W. Dolan, L.R. Snyder, I. Molnar, J. Chro-

matogr. 592 (1992) 197–208.
[11] J.A. Lewis, D.C. Lommen, W.D. Raddatz, J.W. Dolan,

L.R. Snyder, I. Molnar, J. Chromatogr. 592 (1992) 183–
195.

[12] M.T. Hearn, M.I. Aguilar, C.T. Mant, R.S. Hodges, J
Chromatogr. 438 (1988) 197–210.

[13] L.P. Hammett, Physical Organic Chemistry; Reaction
Rates, Equilibria, and Mechanisms, McGraw-Hill, New
York, 1940.

[14] R.W. Taft, Steric Effects in Organic Chemistry, John
Wiley, New York, 1956, p. 556.

[15] W. Lyman, W. Reehl, D. Rosenblatt, Handbook of
Chemical Property Estimation, American Chemical Soci-
ety, Washington, DC, 1990.

[16] C. Hansch, J.E. Quinlan, G.L. Lawrence, J. Org. Chem.
33 (1968) 347–350.

[17] A. Leo, C. Hansch, C. Church, J. Med. Chem. 12 (1969)
766.

[18] K. Yoshida, T. Shigeoka, F. Yamauchi, Ecotox. Environ.
Saf. 7 (1983) 558–565.

[19] D. Ayma1, J.P. Campillo, M. Rérat, M. Causà, J. Com-
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